
Functional Requirement #3- Data Point Reliability

We are currently having issues getting accurate and precise measurements for our current and
voltage readings. Entirely new codes have been created this semester in hopes of solving this issue.
Additionally, we troubleshot this issue with the implementation of several different methods, which we
will speak about in this document.

Voltage Readings:

One of the objectives this semester is to obtain more precise readings with the 12-bit ADC of the
Arduino Nano RP2040. Since the old hardware used a regression based on experimental points, we want
to do this again since the opto-coupler board we are using does not have good documentation to calculate
input voltage. The following are our attempts to do so this semester.

5V Linear Regression

Our first approach was measuring the peak-to-peak voltage of the optocoupler when supplied
with 5v. It gave us a linear regression, but the Nano works on a 3.3 V supply and we will only want one
power source on the final PCB.

Figure 1: Voltage vs. Peak-to-Peak ADC Values using 5v Input

3.3V Attempted Regression

Then we powered the optocoupler with 3.3v and we tried the same thing but couldn’t get a good
regression for the window we were testing (110 - 130 V). The lowest polynomial we could fit to was a
quartic and was not valid over the entire range.



Figure 2: Voltage vs. Peak-to-Peak ADC Values using 3.3v Input

3.3 V Attempted Regression with resistor swap

Then we did a resistor swap for 47k to 33k to scale the output voltage to 3.3v, but there is no
correlation between voltage of the variac and the output of the optocoupler. Any correlation is far too
close to perform a regression. The difference between voltage values is only a couple ADC values so it
would not be consistent enough to get reliable readings.

Figure 3: Optocoupler Voltage Readings vs. Wall Outlet

Current Readings:

Last semester, the ACS712 (current sensor) provided readings that were accurate, but were
unfortunately imprecise. For example, if there was an expectation for a current reading of 0.15A, the data
points would read 0.11A to 0.17A. We believe that this imprecision is due to the length of the sampling
window. It seems as if there are not enough points taken when the device is sampling and this causes
some variance with the readings. Unfortunately, the code that was written is not easily mutable and we
felt it would be best to redesign the reading libraries to have a sample frequency and variable sampling
window.

Originally, the ACS712 (the current sensor) was integrated into the circuit design, as it has a 5v
input for functionality, which was in accordance with the Arduino Uno. Since switching to the Arduino
Nano, which has a 3.3v input and ADC reference, this was no longer applicable and we had to reevaluate
our current design. These constraints informed our decision to replace the ACS712 with the ACS725
current sensor. This current sensor operates at 3.3V and, which is compatible with the new Arduino Nano
and allows for an internal power supply.



Measurement Reliability:

Unfortunately, we are unsure as to whether our current data set is more reliable at this point in
time. Since the PCB was a semester-long goal, we were unable to test the new current sensor with our
code. This left us to test new code on our breadboard setup which caused some problems with the
reliability of our measurements. The noise and voltage drops associated with using a breadboard left us
with imprecise results, which inhibited us from fine tuning our conversions between ADC and real world
values. Furthermore, our setup left us with some noise caused by the proximity to our high power lines.
This is another issue that can be solved when the new hardware is implemented, because it isolates high
and low currents from each other. Another setback is that the ACS725 component was not provided until
recently, which left us minimal time to test its functionality. This will, however, lead us to more accurate
and reliable measurements for the future.


